

Highlights

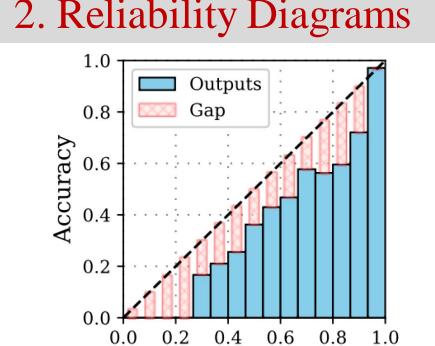
- under domain/dataset drift
- images and NL classification tasks

times the event transpires



$\mathbb{P}(\widehat{y}_i = y_i^*$	$ \mathbf{s}[\widehat{y}_i] = p) = p$	$\mathbb{P}(y =$	$y_i^* \mid \mathbf{s}_i[y] =$

- [ECE] <u>Expected</u> <u>Calibration</u> <u>Error</u>: It calculates the absolute difference between the model's accuracy and confidence. It captures the information about top-label calibration.
- [SCE] <u>Static</u> Calibration Error: A simple class-wise extension to ECE that captures multi-class calibration



Confidence

A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration

Ramya Hebbalaguppe^{1,2,*}

¹Indian Institute of Technology Delhi, India

Proposed Solution

Jatin Prakash^{1,*}

* The output confidence values are for illustration purposes only

Paper and Code: https://github.com/mdca-loss

Neelabh Madan^{1,*}

²TCS Research, India

j]
$$-\frac{1}{N_b}\sum_{i=1}^{N_b} q_i[j]$$

K = Number of Classes

NL

Chetan Arora¹

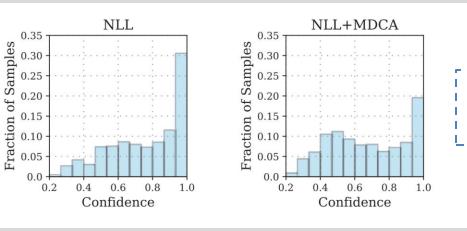
1. Superior performance against trainable calibration methods

Dataset	Model	BS [2]		DCA [31]		MMCE [26]		FLSD [37]		Ours (FL+MDCA)						
Dataset	Widder	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE	SCE	ECE	TE
CIFAR10	ResNet32	6.60	2.92	7.76	8.41	4.00	7.06	8.17	3.31	8.41	9.48	4.41	7.87	3.22	0.93	7.18
CITARIO	ResNet56	5.44	2.17	7.75	7.59	3.38	6.53	9.11	3.71	8.23	7.71	3.49	7.04	2.93	0.70	7.08
CIFAR100	ResNet32	1.97	5.32	33.53	2.82	11.31	29.67	2.79	11.09	31.62	1.77	1.69	32.15	1.72	1.49	31.58
CIFARIO	ResNet56	1.86	4.69	30.72	2.77	9.29	43.43	2.35	8.61	28.75	1.71	1.90	29.11	1.60	0.72	29.8
SVHN	ResNet20	2.12	0.45	3.56	4.29	2.02	3.83	9.18	4.34	4.12	18.98	9.37	4.10	1.90	0.47	3.92
SVIIN	ResNet56	2.18	0.66	3.25	2.16	0.49	3.32	9.69	4.48	4.26	26.15	13.23	3.65	1.51	0.23	3.85
Mendeley V2	ResNet50	117.6	3.75	18.43	145.1	8.29	17.47	130.4	3.45	15.06	104.3	9.64	19.71	85.68	4.81	17.95
Tiny-ImageNet	ResNet34	1.53	7.79	43.00	2.11	17.40	36.68	1.62	9.71	40.75	1.18	1.91	37.01	1.17	1.99	37.49
20 Newsgroups	Global-Pool CNN	725.82	13.71	25.93	719.83	15.30	28.07	731.31	12.69	28.63	940.70	4.52	30.80	487.82	16.55	27.88

2. Superior class-wise calibration

Method	Classes									
	0	1	2	3	4	5	6	7	8	9
Cross Entropy	0.20	0.62	0.33	0.65	0.23	0.36	0.25	0.26	0.21	0.41
Focal Loss [32]	0.30	0.48	0.41	0.18	0.38	0.19	0.33	0.36	0.32	0.30
LS [38]	1.63	2.60	2.54	1.90	1.91	1.74	1.73	1.75	1.63	1.58
Brier Score [2]	0.23	0.28	0.40	0.45	0.25	0.26	0.25	0.27	0.21	0.37
MMCE [26]	1.78	2.35	2.12	2.00	1.74	1.87	1.65	1.76	1.70	1.84
DCA [31]	0.31	0.70	0.40	0.72	0.31	0.46	0.35	0.35	0.37	0.36
FLSD [37]	1.52	3.24	2.74	2.15	1.79	1.82	1.84	1.62	1.54	1.38
Ours (FL+MDCA)	0.22	0.16	0.24	0.25	0.22	0.16	0.16	0.17	0.25	0.20

4. Mitigating overconfident mistakes



6. Mitigating over/under confidence

NLL	NLL+MDCA 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Confidence	LS 0.0 0.6 0.4 0.2 0.0 0.2 0.4 0.2 0.0 0.2 0.4 0.2 0.0 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.6 Confidence

Bird

(a) GT: Bird

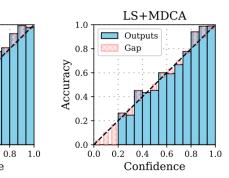
(c) GT: Person



(d) GT: Person

Experimental Results

_____ Sampled incorrect predictionsonly



3. Performance under dataset drift

Method	Art	Cartoon	Sketch	Average
NLL	6.33	17.95	15.01	13.10
LS [38]	7.80	11.95	10.88	10.21
FL [32]	8.61	16.62	10.94	12.06
Brier Score [2]	6.55	13.19	15.63	11.79
MMCE [26]	6.35	15.70	17.16	13.07
DCA [31]	7.49	18.01	14.99	13.49
FLSD [37]	8.35	13.39	13.86	11.87
Ours (FL+MDCA)	6.21	11.91	11.08	9.73

5. Performance under data imbalance

Method	IF-10	CIFAR10 IF-50	IF-100	SVHN IF-2.7
NLL	18.44	32.21	31.04	3.43
FL [32]	14.65	29.67	28.89	2.54
LS [38]	14.88	26.30	20.79	18.80
BS [2]	15.74	33.57	29.01	2.12
MMCE [26]	15.10	29.05	21.56	9.18
FLSD [37]	16.05	31.35	30.28	18.98
DCA [31]	18.57	32.81	35.53	4.29
Ours (FL+MDCA)	11.83	22.97	26.89	1.90

Other results include

- Superior semantic segmentation results
- Superior performance against post-hoc calibration methods

Qualitative Results

	Automobile	29		Input Image		TS Calibrated	Ours	1.0
-	Airplane Truck Automobile Airplane	99 0.0	% %		Class: Cow			- 0.8
k								- 0.6
1	Guitar 95 Person 2.0 Dog 1.2	%			erson			- 0.4
9	Guitar 45 Person 30 Dog 8.4				Class: P			- 0.2

(e) Class Activation Maps (CAMs)